Revised Programme Outcomes (POs) of Department of I.T.

Engineering Graduates will be able to:

- 1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- 2. Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- 3. Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- 4. Conduct investigations of complex problems: Use research

BE-INFORMATION TECHNOLOGY SCHEME & SYLLABUS Batch 2021-

W	-	Withdrawal
Χ	-	Unsatisfactory
S	-	Satisfactory Completion

4.0 Evaluation System

4.1 Continuous Assessment:

There shall be continuous evaluation of the student during the semester. For evaluation purpose, total marks assigned to each subject shall be distributed as :

Two Mid semester Examination (Minor-1 and Minor-2) with 30 % of total marks assigned to the subject. Best Marks of one of these two will be considered for award of sessional.

Points earned in a semester =

The SGPA is calculated on the basis of grades obtained in all courses, except audit courses and courses in which S/Z grade is awarded, registered for the particular semester.

The CGPA is calculated as given below :

			He	ours p	per				
Course	Course Name			week	<u> </u>				
Code		Option	L	Т	Р	Credits	Internal	University	Total
							Assessment	Exam	
ASC X01	Applied Chemistry	Theory	4	0	0	4	50	50	100
ASC X51	Applied Chemistry (P)	Practical	0	0	3	1.5	50	0	50
ASM 201	Differential Equations	Theory	4	1	0	5	50	50	100
	and Transforms	_							
HSMC	Professional	Theory	2	0	0	2	50	50	100
X01	Communication	_							
HSMC	Professional	Practical	0	0	2	1	50	0	50
X51	Communication (P)								
ITC 201	Object Oriented	Theory	3	0	0	3	50	50	100
	Programming using								
	C++								
ITC 251	Object Oriented	Practical	0	0	4	2	50	0	50
	Programming using								
	C++ (P)								
K08	Basic Information	Theory	2	0	0	2	50	50	100
	Theory and								
	Communication								
ESC X58	Basic Information	Practical	0	0	2	1	50		
	Theory and								
	Communication (P)								

First Year- Second Semester

Second Year- Fourth Semester

Teaching Scheme for B.E. Third Year

Third Year - Fifth Semester

		Sah	omo of Toook	ina		Scheme of Examination		
Subject	Subject Subject Name		Scheme of Teaching			The	ory	Ducation
Code	Subject Maine	L-T-P	Contact	Credits		Internal	Univ.	(Internal)
			hrs./week		Category	Ass.	Exam	
PCIT501	Network Security	3-1-0	4	4	PC	50	50	
	and Cryptography							-
PCIT551	Network Security	0-0-2	2	1	PC	-	-	50
	and							
	Cryptography(P)							
PCIT502	Design and	3-1-0	4	4	PC	50	50	-
	Analysis of							
	Algorithms							

Professional Elective-I					
(Choose any one from the following)					
Sr No.	Subject	Subject Code			
1					

		Scheme	of Teaching		Sc	heme of Exai	nination	
Subject	Subject Subject Name					Theory		
Code	Subject Mame	L-T-P	Contact hrs./week	Credits	Туре	Internal Ass.	Univ. Exam	Practical (Internal)
PCIT801	Embedded System Design	3-1-0	4	4	PC	50	50	-
PCIT851	Embedded System Design (P)	0-0-3	3	1.5	PC	-	-	50
PCIT802	Cloud Computing	3-1-0	4	4	PC	50	50	-
PEIT801a, PEIT801b, PEIT801c, PEIT801d	Professional Elective-V	3-0-0	3	3	PE	50	50	-
HSMC801a, HSMC801b, HSMC801c, HSMC801d, HSMC801e, HSMC801f	Management Elective(Choice Based Elective)	3-0-0	3	3	HS	50	50	-
OEIT 801	*Open Elective-III	3-0						

Fourth Year - Eighth SemesterOption-1

BE-INFORMATION TECHNOLOGY SCHEME & SYLLABUS Batch 2021-25

SYLLABUS FOR B.E. (I.T.) FIRST SEMESTER COURSE INFORMATION SHEET

Course Code	ASP X01
Course Title	Applied Physics
Type of Course	
LTP	403
Credits	4
Total Lectures	45
Course Assessment Methods	50
End Semester Assessment (University Exam.)	50
Continuous Assessment (Sessional)	

SYLLABUS

Note: The examiner shall set seven questions of 10 marks each. First question has to be compulsory, having sections covering the whole syllabus. Three questions have to be set from Section A and three questions from Section B of the syllabus. Candidate is required to attempt at least two questions from each section. All the course outcomes must be covered by the question paper.

SECTION-A	Hours
Oscillations	
Complete mathematical treatment for mechanical as well as electrical free, damped and	(4)
forced oscillators.Simple harmonic oscillator and solution of the differential equation,	
Physical characteristics of SHM.Superposition of two SHMs executing in same and	
perpendicular direction of same frequency and different frequencies, Lissajous figures.	
Superposition of n SHMs	
Damped Oscillations:	
Concept and cause of damping, differential equation of a damped oscillator and different	
kinds of damping, Methods of describing damping of an oscillator - logarithmic	(4)
decrement, relaxation time, quality factor, band width. Series LCR circuit as a damped	
oscillator. Use of damping in shock absorbers and seismic dampners.	
Forced Oscillations:	(4)
States of forced oscillations, differential equation of forced oscillator its displacement, velocity	
bandwidth. Quality factor and amplification of forced oscillator, resonance in forced oscillators	
vibration insulator.	
Electromagnetic waves:	(8)
Maxwell equations and their significance. Electromagnetic waves in vacuum conducting medium	(-)
and non-conducting medium. Energy and momentum carried by electromagnetic waves and	
examples. Momentum carried by electromagnetic waves and resultant pressure. Reflection and	
transmission of electromagnetic waves for oblique and normal incidence.	

RECOMI

- Reference]
- 1. Introduc
- 2. Solid Sta
- 3. Physics 1
- 4. Physics
- 5. Optics
 6. Introduc

Course Code	ASP X02
Course Title	Quantum Physics
Type of Course	
LTP	403
Credits	4
Total Lectures	45
Course Assessment Methods	50
End Semester Assessment (University Exam.)	50
Continuous Assessment (Sessional)	

SYLLABUS

Note: The examiner shall set seven questions of 10 marks each. First question has to be compulsory, having sections covering the whole syllabus. Three questions have to be set from Section A and three questions from Section B of the syllabus. Candidate is required to attempt at least two questions from each section. All the course outcomes must be covered by the question paper.

SECTION-A	Hours
Special Theory of Relativity	
Inertial and non-inertial frames of reference, Galilean transformation, Michelson Morley Experiment, Postulates of special theory of relativity, Lorentz transformation, Simultaneity, Length contraction, Time dilation, Doppler effect, Addition of velocities, variation of mass with velocity, mass-energy relation, Relativistic momentum, Minkowski space .(Section 1.1 to 1.5, 1.7 to 1.9 of Book 1).	(8)
Origin and Postulates of Quantum Mechanics Quantum theory of light, Blackbody Radiation, Photoelectric effect, Compton effect, X-rays	
Gravitational Red Shift, Black holes, de-Broglie hypothesis, particle diffraction, uncertainty principle and its applications .	(9)

Postulates of quantum mechanics, wave function, Born interpretation and normalization, Schrodinger theory, Time-dependent and Time-

References:

- 1. Concepts of Modern Physics, by Arthur Beiser (McGraw-Hill)
- 2. Introduction to Solids by Leonid V. Azaroff
- 3. Elementary Solid state Physics by M.Ali Omar (Pearson Education)
- 4. Solid State Physics, by C. Kittel (Wiley Eastern)
- 5. Solid State Physics, by S.O. Pillai (New Age International)

COURSE INFORMATION SHEET

Course Code	ASP X52
Course Title	Quantum Physics (P)
Course Assessment Methods	
Practical (Continuous and end semester	50
evaluation)	

List of Experiments

1. To study the quantized energy level of the first excited state in the Argon using the Frank-Hertz setup.

3. To study various characteristics of photo-voltaic cell: (a) Voltage-current characteristics, (b) loading characteristics, (c) power-resistance characteristics and (d) inverse square law behavior of the photo-current with distance of source of light from photo-voltaic cell

4. To study the response of a photo-resistor to varying intensity of light falling on it and deduce spectral sensitivity of its semiconductor material.

5. To study the Balmer Series of Hydrogen spectrum using diffraction grating and calculate Rydberg constant.

6. To evaluate charge on an oil drop using Millikan's oil drop method.

7. To verify Rutherford's alpha scattering formula using a mechanical model.

9. To determine Hall coefficient of a groent bOO2TD:UD.Z2Dq0pNOEh;Sq2OAPv&YS(4\$394@PhQV&ODAPv&BAWSq9C€I

RECON	RECOMMENDED BOOKS					
S.No.	NAME	AUTHORS	PUBLISHER			
1.	Material science and engineering An Introduction	William D Callister	6 Th edition, John Willey and Sons.			
2.	Material Science and Engineering A First Course	V. Raghvan	4 th edition, Eastern economy edition			
3.	Solid State Physics	S. O. Pillai	New Age International			
4.	Introduction to Solids	Leonid V Azaroff	Tata McGraw Hill, 3 rd edition.			

Course Code	ASP X53
Course Title	Physics of Materials (P)
Course Assessment Methods Practical (Continuous and end semester evaluation)	50

List of Experiments

- 1. To study the quantized energy of the first excited state in Argon using the Frank-Hertz Set-up.
- 2. To find the value of

cell.

- To study various characteristics of photovoltaic cell: (a) Voltage-current characteristics (b) loading characteristics
 (c) power-resistance characteristics and (d) inverse squarelaw behavior of photocurrent with distance of source of light from photovoltaic cell.
- 4. To study the response of a photoresistor to varying intensity of light falling on it and deduce spectral sensitivity of its semiconductor material.
- 5. To determine Hall coefficient of a semiconductor material and then evaluate the type, density and mobility of charge carrier in a given semiconductor material.
- 6. To study the hysteresis loop of magnetic material (iron, nickel and steel) and determine its retentivity, coercivity and energy dissipated per unit volume per cycle of hysteresis.
- 7. To study temperature dependence of resistivity of a semiconductor material using four probe method and further deduce the band gap of this semiconductor.

- 8. To determine the Curie temperature of a ferroelectric material by measuring dielectric constant as a function of temperature.
- 9. To determine thermal conductivity of bad conductor by using guarded plate method (Lee's disc method)

RECOMMENDED BOOKS

S. No.	NAME	AUTHORS	PUBLISHER
1.	Calculus		

Course Code	ESC X01
Course Title	Programming for Problem Solving
Type of Course	
ITR	-

LT P

Text books:

Course Code	ESC X51
Course Title	Programming for Problem Solving (P)
Course Assessment Methods Practical (Continuous and end semester evaluation)	50

Course Code	ESC X53
Course Title	WORKSHOP (P)
Type of Course	
LTP	
Credits	
Total Lectures	
Course Assessment Methods	50
End Semester Assessment (University Exam.)	
Continuous Assessment (Sessional)	

Course Objectives (CO)

RECOMMENDED BOOKS			
S. No.	NAME	AUTHORS	PUBLISHER
1.	Fundamentals of Computers	P. K. Sinha	BPB Publications
2.	Fundamentals of Computers	V. Rajaraman	3 rd edition, PHI Publications
3.	Data and Computer Communications	William Stallings	PHI Publications
4.	Internet Working with TCP/IP	Douglas E. Coomer	PHI Publications
5.	An Introduction to Database Systems	C J Date	8 th edition, Pearson Publications

Course Code	ASC X01
Course Title	Applied Chemistry
Type of Course	
Credits	
Total Lectures	
Course Assessment Methods	50
End Semester Assessment (University Exam.)	50
Continuous Assessment (Sessional)	

RECOMMENDED BOOKS S.No. NAME AUTHOR(S) PUBLISHER

1.

7	Introduction to spectroscopy	D. S. Pavia, G.M. Lasmpman and G.S. Kriz	4th Edition, Thomson learning, Indian Edition 2012.
8	Basic Inorganic Chemistry.	F.A. Cotton, G. Wilkinson and P.L. Gaus	3rd Ed., John Wiley & Sons
9	Inorganic Chemistry- Principles of structure and reactivity	James E. Huheey, Ellen A.	

Course Code	ASM 201	
Course Title	Differential Equations and Transforms	
Type of Course		
LT P		
Credits		
Total Lectures		
Course Assessment Methods		
End Semester Assessment (University Exam.)	50	
Continuous Assessment (Sessional)	50	
Course Objectives (CO)	 To learn the methods to formulate and solve linear differential equations and their applications to engineering problems 1.To learn the concepts of Laplace transforms and to evaluate Laplace transforms and inverse Laplace transform 2.To apply Laplace transforms to solve ordinary differential equations. 3.To learn the concept of Fourier series, integrals and transforms. 4.To learn how to solve heat, wave and Laplace equations. 	
Course Outcome.	 The student will learn to solve Ordinary Differential equations. The students will be able to apply the tools of Laplace Transforms to model engineering problems and solve the resulting differential equations. Students will understand the nature and behaviour of trigonometric (Fourier) series and apply it to solve boundary value problems. 	
SYLLABUS Note: The examiner shall set seven questions of 10 marks each. First question has to be		
Section A and three questions from Section R	of the syllabus. Candidate is required to attempt	

Section A and three questions from Section B of the syllabus. Candidate is required to attempt at least two questions from each section. All the course outcomes must be covered by the question paper.

SECTION-A	Hours
ORDINARY DIFFERENTIAL EQUATIONS	(6)
Review of geometrical meaning of the differential equation, directional fields, exact differential	
equations(scope as in chapter 8, sections 8.1 8.10 of reference 5), solution of differential	
equations with constant coefficients; methods of differential operators (scope as in chapter 9,	
sections 9.1 9.5 of reference 5). Non-homogeneous equations of second order with constant	
coefficients: Solution by method of variation of parameters, reduction by order (scope as in	
chapter 9, section 9.7, 9.10 of reference 5). Power series method of solution (scope as in chapter	
10, section 10.2 of reference 5)	

COURSE
Suggested Readings:

- (i) Practical English Usage. Michael Swan. OUP. 1995.
- (ii) Remedial English Grammar. F.T. Wood. Macmillan.2007
- (iii)On Writing Well. William Zinsser. Harper Resource Book. 2001
- (iv) Study Writing. Liz Hamp-Lyons and Ben Heasly. Cambridge University Press. 2006.
- (v) Communication Skills. Sanjay Kumar and PushpLata. Oxford University Press. 2011.
- (vi) Exercises in Spoken English. Parts. I-III. CIEFL, Hyderabad. Oxford University Press.

COURSE INFORMATION SHEET

Course Code	HSMC X51	
Course Title	Professional Communication (P)	
Course Assessment Methods Practical (Continuous and end semester evaluation)	50	
Course Outcome	The student will acquire basic proficiency in English including reading and listening comprehension, writing and speaking skills.	

Practical

Oral Communication

(This unit involves interactive practice sessions in Language Lab)

- 1. Telling something about oneself
- 2. Story Telling and Event
- 3. Listening Comprehension
- 4. Pronunciation, Intonation, Stress and Rhythm
- 5. Common Everyday Situations: Conversations and Dialogues
- 6. Communication at Workplace

Course Code	ITC 201
Course Title	Object Oriented Programming using C++
Type of Course	PC
LTP	304
Credits	5
Total Lectures	45
Course Assessment Methods End Semester Assessment (University Exam.)	50
Continuous Assessment (Sessional)	50
Course Objectives (CO)	 To provide students in-depth theoretical base and fundamentals of Object Oriented Programming paradigm. To prepare students to design and code various projects using C++.
Course Outcome.	 After completion of this course, the students are able to: I. Understand the fundamentals of Object Oriented Programming paradigm. II. Learn and apply core objected oriented concepts like classes, objects and overloading, code reusability. III. Learn how the data flows between the programs and files in Object Oriented framework and implement various file handling operations. IV. Analyze information systems in real-world settings and prepare an Object Oriented design for the same.

SYLLABUS

Note: The examiner shall set seven questions of 10 marks each. First question has to be compulsory, having sections covering the whole syllabus. Three questions have to be set from Section A and three questions from Section B of the syllabus. Candidate is required to attempt at least two questions from each section. All the course outcomes must be covered by the question paper.

SECTION-A

Hours

Principles of ObGr(0)164 339.65 497.98 0.48001 ref554.62 339.65 0.479981.0.0353 RG[ope)9(r

RECOMMENDED BOOKS				
S.No.	Name		Author	Publishers
1	Programming with C++, Edition	2nd	Bala Guruswamy	Tata McGraw Hill
2	C++ Primer Plus		Prata	Pearson Education
3	1		I	I

Course Code	ITC 251	
Course Title	Object Oriented Programming using	
	C++ (Practical)	
Course Assessment Methods		
Practical (Continuous and end semester evaluation)	50	
Course Objectives	To enable students to understand the concepts of object oriented programming using C++ by designing and implementing moderately complex problems. Students should master modern tools for computer aided software engineering along with good program documentation.	
List of Experiments To write and implement program on:		
1. Functions, Classes and Objects		
2. Constructors and Destructors		
3. Operator Overloading and Type Conversion		
4. Inheritance and Virtual Functions		
5. File Handling		
6. Exception Handling and Generic Prog	ramming	

Course Code	ESC X08	
Course Title	Basic Information Theory and Communic	ation
Type of Course	ES	
	202	
Credits	3	
Total Lectures	30	
Course Assessment Methods	-	
End Semester Assessment (University Exam.)	50	
Continuous Assessment (Sessional)	50	
Course Objectives (CO)	 To have knowledge of Information entropy and coding. To understand about the analog and modulation techniques used for transmission. 	theory, digital signal
Course Outcome.	 After completion of this course, the students able to: Learn concepts of Information Theory and coding. Acquire knowledge about AM, FM an PM transmission and reception. Understand and analyze various pulse modulation techniques. Understand and apply the principles of digital transmission. 	are 7 nd f
SYLLABUS Note: The examiner shall set seven questions of 10 marks each. First question has to compulsory, having sections covering the whole syllabus. Three questions have to be set for Section A and three questions from Section B of the syllabus. Candidate is required to atten at least two questions from each section. All the course outcomes must be covered by		s to be et from attempt by the
question paper.		TT
SECTION-A	A]	Hours
Set theory, Introduction to probability, Conditional Binomial, Poisson and Normal distribution		(3)
Information Theory: Unit of Information, Entropy, Ra Conditional Entropy, Mutual Information, Channel capa Bandwidth and SNR trade-off	te of Information, Joint Entropy and acity,	(5)
Coding		(6)
Coding Efficiency, Shannon Fano Coding, Huffman C Codes, Convolution Codes	oding, Error Control Coding, Block	
SECTION-B		

SECTION-A	CO(s)
Introduction Introduction to data structures; Introduction to Algorithms Complexity. (01)	1,2,5
Arrays, Stacks & Queues	2,3
Concepts; Basic operations & their algorithms: Transverse, Insert, Delete, Sorting of data in these data structures; Prefix, Infix, Postfix Notations. (08)	
Lists Concepts of Link List and their representation; Two way lists; Circular link list; Basic operations & their algorithms: Transverse, Insert, Delete, Searching and Sorting of data in List; Storage Allocation & Garbage Collection; Linked stack and queues; Generalized List; sparse matrix representation using generalized list structure. (08)	2,3
SECTION-B	
Trees Binary Trees and their representation using arrays and linked lists; Trees and their applications; Binary tree transversal; Inserting, deleting and searching in binary trees; Heap & Heap Sort; General Trees; Thread binary tree; Height balance Tree (AVL); B-Tree. (08)	2,4
Graphs and their applicationsGraphs; Linked Representation of Graphs; Graph Traversal and spanning forests; Depthfirst search; Breadth first search.(08)	2,4
Sorting & SearchingInsertion sort; Selection sort; Merging; Merge sort; Radix sort; Sequential & BinarySearch; Indexed Search; Hashing schemes; Binary search Tree.(10)	2,6

RECOMMENDED BOOKS

S. No.	NAME	AUTHOR(S)	PUBLISHER
1			

Course Code	PCIT 351
Course Title	Data Structures (Practical)
Type of Course	PC
Credits	1.5
Course Assessment Methods:	
End Semester Assessment (University Exam.)	00
Continuous Assessment (Practical)	50
Course Prerequisites	Object Oriented Programming using C++
Course Objectives	 I. To provide knowledge about developing recursive as well as non-recursive algorithms and to gain the knowledge of different data structures. II. To be able to Choose the appropriate data structure and algorithm design method for a specified application and to develop skills to design and analyze simple linear and non linear data structures, III. To strengthen the ability to identify and apply the suitable data structure for the given real world problem and to gain knowledge in practical applications of data structures.

SYLLABUS

List of Programs:

- **1. Implementation of Array Operation:** Traversal, Insertion & Deletion at and from a given location; Sparse Matrices; Multiplication, addition.
- **2. Stacks**: Implementation of Push, Pop; Conversion of Infix expression to Postfix, Evaluation of Postfix Expressions.
- 3. Queues: Adding, Deleting Elements; Circular Queue: Adding and deleting elements.
- **4. Implementation of Linked Lists**: Inserting, deleting, and inverting a linked list. Implementation of stacks and queues using linked lists; Polynomial addition, Polynomial multiplication.
- **5. Trees**: Implementation of Binary & Binary Search Trees, Recursive and Non-Recursive traversal of Tress.
- 6. Graphs: BFS & DFS
- 7. Implementation of sorting and searching algorithms.
- **8. Hash Tables Implementation:** Searching, inserting and deleting, searching & sorting techniques.

Course Code	ESC 301
Course Title	Digital Electronics (Theory)
Type of Course	ES
LTP	313
Credits	04
Total Lectures	45
Course Assessment Methods:	
End Semester Assessment (University Exam.)	50
Continuous Assessment (Sessional)	50
Course Prerequisites	Basic Information Theory and Communication.
Course Objectives	The objective of this course is that students are
	able to understand, analyze and design
	combinational and sequential circuits by applying
	the concepts of digital electronics.
Course Outcomes	After completion of this course, the students will
	be able to:
	39 T 4 .R0 6d 1 . 3 32.47 500le8 Tmn9 Tmlgebr 37.92 T,

BE-INFORMATION TECHNOLOGY SCHEME & SYLLABUS Batch 2021-25

Course Code	ESC 351
Course Title	Digital Electronics (Practical)
Type of Course	ES
Credits	1.5
Course Assessment Methods:	
End Semester Assessment (University	00
Exam.)	50
Continuous Assessment (Practical)	
Course Prerequisites	Basic Information Theory and Communication.
Course Objectives	The aim of this course is to provide an understanding of the fundamentals of digital logic design to the students through practical training. The student is given hands-on-experience on the usage of ICs and design of circuits using gates, flip-flops, multiplexers so as to enhance the theoretical study of the subject.

SYLLABUS List of Experiments:

respective ICs.

d test the truth table of Half adder and Full adder.

ous flip flops: RS, D, JK and T Flip Flops

s counter.

COURSE INFORMATION SHEET

Central Processing Unit

RECOMMENDED BOOKS

S. No.	NAME	AUTHOR(S)	PUBLISHER
1	Computer Architecture & Organization.	J.P Hayes	Tata McGraw Hill
2	Computer System Architecture.	Morris Mano	PHI
3	Advanced Computer Architecture.	Kai Hwang	Tata McGraw Hill
4	Computer Organization and. Architecture.	William Stallings	PHI

at least two questions from each section. All the course outcomes must be covered by the question paper.

SECTION-A	CO(s)
Introduction to Database Systems	1
File Systems Versus a DBMS, Advantages of a DBMS, Describing and Storing Data in	
a DBMS, Database System Architecture, DBMS Layers, Data independence. (06)	
Physical Data Organization	1
File Organization and Indexing, Index Data Structures, Hashing, B-trees, ClusteredIndex, Sparse Index, Dense Index, Fixed length and Variable Length Records.(07)	

Data Models

Relational Model, Network Model, Hierarchical Model, ER Model: Entities, Attributes and Entity Sets, Relationships and Relationship Sets, Constraints, Weak Entities, Class

Course Code	PCIT 353
Course Title	Database Management Systems (Practical)
Type of Course	PC
Credits	1.5
Course Assessment Methods:	
End Semester Assessment (University Exam.)	00
Continuous Assessment (Sessional)	50
Course Prerequisites	Introduction to Information Technology
Course Objectives	 To use the Oracle and SQL database systems along with hands on experience on DDL, DML as well as DCL Commands. To make students able to implement nested queries and various functions based on programming assignments.
SYLLABUS	

SYLLABUS FOR B.E. (I.T.) FOURTH SEMESTER

COURSE INFORMATION SHEET

Course Code	HSMC-401a
Course Title	Economics (Theory)
Type of Course	HS
LTP	300
Credits	03
Total Lectures	45
Course Assessment Methods:	
End Semester Assessment (University Exam.)	50
Continuous Assessment (Sessional)	50
Course Prerequisites	Nil
Course Objectives	I. To make students understand how society manages its scarce resources for

achieving maximum satisfaction. II. To make students learn about economic aspects related

SECTION-B

Theory of Market	
Nature and Relevance of Perfect Competition, Monopoly and Monopolistic	(08)
Competition.	
Basic Concepts of Macro Economics	
National Income: Concept and Measurement, Determination of Equilibrium of Income	
Inflation: Concept, Causes and Effect of Inflation, Measures to Control Inflation.	
Project Presentations	

RECOMMENDED BOOKS

S. No.	NAME	AUTHOR(S)	PUBLISHER
1			

Course Code	HSMC-401b
Course Title	Introduction to Psychology (Theory)
Type of Course	HS
	300
Credits	03
Total Lectures	45
Course Assessment Methods:	
End Semester Assessment (University Exam.)	50
Continuous Assessment (Sessional)	50
Course Prerequisites	Nil
Course Objectives	I. To provide knowledge and understanding about important concepts in Psychology.II. To make students learn the application of principles of psychology in working life.
Course Outcomes	After completion of this course, the students will be able to:

I. Learn the causes and dynamics of human

the concept and theoretical framework, motivating people at work

Primitive, Agrarian, Industrial and Post-Industrial, Features of Industrial and Post-Industrial Society, Impact of Automation and Industrialization on Societyc

relation, paths in relations and digraphs, equivalence relations and sectionitions, operations on relations, transitive closure and (Scope as in Chapter 4, Sections 4.1 4.7 of Reference 2).

Functions, One-to-one and onto functions, Special functions. The pigeon hole principle. Function composition and inverse functions (Scope as in Chapter 5, Sections 5.1 5.6

Course Code	PCIT 401
Course Title	Microprocessor & Assembly Language
	Programming (Theory)
Type of Course	PC
LTP	313
Credits	04
Total Lectures	45
Course Assessment Methods:	
End Semester Assessment (University Exam.)	50
Continuous Assessment (Sessional)	50
Course Prerequisites	Basic Information Theory and Communication, Computer Architecture and Organization.
Course Objectives	To understand and apply the concepts of 8085 Microprocessor so as to prepare the graduates to write assembly language programs for solving various problems.
Course Outcomes	 After completion of this course, the students will be <u>able to</u>: I. Recall the concepts of number system, digital circuits, data buses, memory, registers, ports. II. Understand the architecture of 8085 and its interfacing with Memory and peripheral I/O devices. III. Apply the concepts of microprocessor to write assembly language programs using 8085 programming instructions. IV. Analyze the problems, time delays caused and breakdown the problem into subroutines. V. Synthesis and develop solution in assembly language by employing the concepts of stacks, subroutines, interrupts and various Programmable Peripheral devices. VI. Evaluate and assess the output of assembly language program.

SYLLABUS

Note: The examiner shall set seven questions of 10 marks each. First question has to be compulsory, having sections covering the whole syllabus. Three questions have to be set from Section A and three questions from Section B of the syllabus. Candidate is required to attempt at least two questions from each section. All the course outcomes must be covered by the question paper.

SECTION-A	CO(s)
Microprocessor Architecture and Microcomputer SystemsMicroprocessor Architecture, The 8085 MPU: Block Diagram, Pin Diagram, Address/DataBuses, Concept of de-multiplexing of Buses, Control and status signals, Registers, Ports, Flags,Instruction Decoding and Execution, memory Interfacing.(06)	1,2

Interfacing I/O Devices	2
Basic Interfacing Concepts, Interfacing Output Displays, Interfacing Input Devices, Memory-	
Mapped I/O. (06)	
Programming the 8085	3,6
Introduction to 8085 Assembly Language Programming, The 8085 Programming Model,	
Instruction Classification, Instruction Format. Data Transfer (Copy) Operations, Arithmetic	
Operations, Logic Operations, Branch Operations, Writing Assembly Language Programs. (07)	
Programming Techniques with Additional Instructions	3,6
Programming Techniques Looping, Counting and Indexing, Additional Data Transfer and 16-Bit	
Arithmetic Instructions, Arithmetic Operations Related to Memory, Logic Operations. (6)	
SECTION D	
SECTION-B	
Counters and Time Delays	4,6
Counters and Time Delays, Hexadecimal Counter, Modulo Ten, Counter, Generating Pulse	
Waveforms, Debugging Counter and Time-Delay Programs. (06)	
Stack and Subroutines	5
Stack, Subroutine, Conditional Call and Return Instructions. (04)	
Interrupts	5
The 8085 Interrupt, 8085 Vectored interrupts.(03)	
General óPurpose Programmable Peripheral Devices	5
Block Diagram, Working and Control word of: The 8255A Programmable Peripheral Interface,	
The 8259 A Programmable Interrupt Controller, Programmable communications interface 8251.	
(07)	

RECOMMENDED BOOKS

S. No.	NAME	AUTHOR(S)	PUBLISHER
1	Microprocessor Architecture,	Ramesh	PHI
	Programming and Applications with the	S.Gaonkar	
	8085		
2	Advanced Microprocessors & Interfacing	Badri Ram	Tata McGraw Hill
3	Microprocessor Principles and		

Applications

Course Code Course Title PCIT 451 Microprocessor & Assembly Language

Course Code	PCIT 452
Course Title	Computer Networks(Practical)
Type of Course	PC
Credits	1.5
Course Assessment Methods:	
End Semester Assessment (University Exam.)	00
Continuous Assessment (Practical)	50
Course Prerequisites	Introduction to Information Technology, Basic
	Information Theory and Communication.
Course Objectives	This course is to provide students with an overview of the concepts of data communication

SYLLABUS

1.To Study different type of network cables.

2.To implement the cross-wired cable and straigt cable using clamping tool.

3.To study various network devices in detail.

4.To study IP address subnetting.

5.To connect the computers in LAN.

6.To Study basic network command and networks communication commands.

7.To configure a network topology.

8. Cisco packet tracer can be used to configure networks.
| SECTION-A | CO(s) |
|--|-------|
| Basic Functions and Concepts of Operating Systems | 1 |
| Concept of an operating systems, batch system, Multi-programmed, Time sharing, | |
| Personal Computer System, Parallel system, Real time system, General system | |
| Architecture. (05) | |
| Features and Objectives of Operating Systems | 2 |
| System components, operating system services, System calls, System Programs, | |
| System Structure, System design and implementation. Concept of process, process | |
| states, process state transition, process control block, operations of processes, | |
| concurrent processes, deadlocks, scheduling algorithms, scheduling criteria, Process | |
| Synchronization. (11) | |
| Memory Management | 3 |
| Logical and physical address space, storage allocation and management techniques, | |
| swapping, concepts of multi programming, paging, segmentation, virtual storage | |
| management strategies, Demand Paging, Page Replacement Algorithms, and | |
| Thrashing. (06) | |
| SECTION-B | |
| Information Management | 4 |
| File concept, Access method, Directory structure, Protection File system structure, | |
| Allocation methods, Free space management, Directory implementation, Disk structure, | |
| Disk Scheduling, Disk management, Swap space management. (06) | |
| Distributed-System Structures | 5 |
| Network operating system, Distributed operating systems, Remote services, | |
| Robustness, Design Issues. (06) | |
| Distributed file systems and Distributed Coordination | 5 |
| Naming and Transparency, Remote file Access, Stateful versus stateless service, File | |
| replication, Event ordering, Mutual Exclusion, Atomicity, Concurrency control, | |
| Deadlock Handling, Election Algorithms, Reaching Agreement. (06) | |
| Case Studies: | 6 |
| Unix O.S. Architecture, Operating system services, user perspective, representation of | |
| files in Unix system processes and their structure, Input-output system, Memory | |
| management, Unix shell, history and evolution of Unix system. (05) | |

S. No.	NAME	AUTHOR(S)	PUBLISHER
1	Operating Systems, 5 th Edition	Galvin & Silberschatz	Addison
			Wesley
			Publishing Ltd
2	An Introduction to Operating System,	Harvey M. Deitel	Narosa
	3 rd Edition		Publishing
			House
3	Operating Systems: Design and	Andrew S. Tanenbaum	PHI
	implementation, 3 rd Edition		
4	Operating system, 5 th Edition	Millan Milankovic	McGraw Hill

Course Code	PCIT 453
Course Title	Operating System (Practical)
Type of Course	PC
Credits	1.5
Course Assessment Methods:	
End Semester Assessment (University Exam.)	00
Continuous Assessment (Practical)	50
Course Prerequisites	Programming Fundamental. Object Oriented
	Programming using C++
Course Objectives	I. To teach students about various operating
	systems including Windows, and UNIX.
	II. To be able to students learn about systems
	configuration and administration. Students
	learn, explore and practice technologies
	related to UNIX.

SYLLABUS

List of Practicals:

- 1. Implement various CPU scheduling algorithms.
- 2.
- 3. Write programs to implement Page replacement algorithms.
- 4. Write an algorithm and program to implement Disc scheduling.
- 5. Installation of the Linux operating system
- 6. Using basic commands-man, who, more, pipe, finger, cat, redirect, ls, cp, mv, rm.Working with directory and plain files-pwd, cd, mkdir, rmdir, lp, wc, date, cal, sort, diff, uniq and grep commands.
- 7. Using miscellaneous commands-head, tail, cut, copy, paste, spell, find and bc.
- 8.

SYLLABUS FOR B.E. (I.T.) FIFTH SEMESTER

COURSE INFORMATION SHEET

Course Code	PCIT501
Course Title	Network Security and Cryptography (Theory)
Type of Course	PC
LT P	312
Credits	04
Total Lectures	45
Course Assessment Methods:	
End Semester Assessment (University Exam.)	50
Continuous Assessment (Sessional)	50
Course Prerequisites	Computer Networks.
Course Objectives	I. To understand and apply the principles of
	encryption algorithms, conventional and public
	key cryptography.
	II. To gain knowledge about authentication, hash
	functions and application level security
	mechanisms.
Course Outcomes	After completion of this course, the students will be
	<u>able to</u> :
	I. To perform analysis of real time systems
	for identifying security threats.
	II. To understand and compare public and private
	cryptographic algorithms and make use of the
	same for encryption and decryption of messages.
	III. To describe key management protocols
	and design confidential systems with minimum
	possible threats.
	IV. To understand hash algorithms and apply both
	cryptography and hashing to create digital
	signatures and certificates for achieving integrity.
	v. To understand application of cryptosystems
	in design of Kerberos, IPSec, AH, and ESP
	VI To understand and compare https via SET
	vi. to understand and compare https vs SE1
	Network
	INCLWOIK.

SYLLABUS

Note: The examiner shall set seven questions of 10 marks each. First question has to be compulsory, having sections covering the whole syllabus. Three questions have to be set from Section A and three questions from Section B of the syllabus. Candidate is required to attempt at least two questions from each section. All the course outcomes must be covered by the question paper.

SECTION-A

CO(s)

Basic Encryption and Decryption Threats and Types of attacks, Challenges for Information Security, Classical Cryptographic Algorithms: Monoalphabetic Substitutions such as Caesar Cipher, Cryptanalysis of Monoalphabetic ciphers; Polyalphabetic Ciphers such as Vigenere, Vernam Cipher; Transposition Cipher. Stream and Block Ciphers (06)	1,2
operations. Data Encryption Standard (DES), Analyzing and Strengthening of DES, Introduction to Advance Encryption Standard (AES). (07)	2
Number Theory and Basic AlgebraModular Arithmetic, Euclidean algorithm, Random number generation.(04)	2
Key Management Protocols:Solving Key Distribution Problem, Diffie-Hellman Algorithm, Key Exchange with Public Key Cryptography.(05)	3
SECTION-B	
Public Key Encryption Systems	2,4
Concept and Characteristics of Public Key Encryption system, Rivets-Shamir-Adleman (RSA) Encryption, Digital Signature Algorithms and authentication protocols, Digital Signature Standard (DSA). (06)	
Hash AlgorithmsHash concept, description of Hash Algorithms, Message Digest Algorithms such as MD4 and MD5, Secure Hash Algorithms such as SH1 and SHA2.(05)	4
Network Security Kerberos, IP security: Architecture, Authentication Header, Encapsulating Security Payload	2,5
(04)	
Kerberos, if security: Arcintecture, Authentication Header, Encapsulating Security 1 ayload. (04) Web Security Web security consideration, Secure Socket Layer Protocol, Transport Layer Security, Secure Electronic Transaction Protocol. (04)	6

S. No. NAME

AUTHOR(S)

PUBLISHER

Course Code	PCIT 502	
Course Title	Design and Analysis of Algorithms(Theory)	
Type of Course	PC	
LT P	312	
Credits	04	
Total Lectures	45	
Course Assessment Methods:		
End Semester Assessment (University Exam.)	50	
Continuous Assessment (Sessional)	50	
Course Prerequisites	Programming for problem solving, Data Structures.	
Course Objectives	The objective of the course is to develop an	
	understanding about basic algorithms and different	
	problem solving strategies. It aims to improve	
	creativeness and the confidence to solve non-	
	conventional problems and expertise for analyzing	
	existing solutions. The course covers asymptotic	
	analysis and algorithm design strategies that can be	
	applied on different problem domains.	
Course Outcomes	After completion of this course, the students will be	
	able to:	

Consul Mathed Dinamy Soonah Matrix Multiplication Manage Sont Quick Sont and their	
General Method, Binary Search, Matrix Multiplication, Merge Sort, Quick Sort and their	
performance analysis. (07)	
Greedy Approach	3,5
Elements of Greedy strategy, Knapsack problem, Single source Shortest paths problem,	
Minimum Spanning tree problem and analysis of these problems. (07)	
SECTION-B	
Dynamic Programming	3,5
General Method, Multistage Graph, All Pairs Shortest Path Algorithm, 0/1 Knapsack Problem,	
Traveling Salesman Problem. (09)	
Backtracking	3
The General Method, 8-Queens Problem- Sum of Subsets, Knapsack. (07)	
P and NP Problems	6
Nondeterministic Algorithms, NP Hard and NP complete problems, Reducibility and NP	
completeness. (06)	

S. No.	NAME	AUTHOR(S)	PUBLISHER
1	Fundamentals of Computer Algorithms	Ellis Horowitz, SartajSahni	Galgotia
2	Introduction to Algorithms	Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest	Prentice Hall
3	The Design and Analysis of Computer Algorithms	Aho A.V., Hopcroft J.E., Ullman J.D.	Pearson Education
4	Fundamentals of Algorithms	Gilles Brassard & Paul Bratley	Prentice Hall

Course Code

PCIT 553

Course Title

Java Methods, Classes and Inheritance	1
Introduction; classes; methods; constructors; overloading methods; arrays; recursion;	
passing arrays and objects to methods; Inheritance; method overriding; abstract classes;	
using final; packages; interfaces. (8)	
Exceptional Handling and Multithreaded Programming	1,2
Exception handling fundamentals; exception types; uncaught exceptions; try and catch;	
creating exception classes; throwing exceptions; Java thread model; thread priorities;	
creating a thread; interthread communication; thread synchronization; suspending,	
resuming and stopping threads. (8)	
I/O, Applets and Graphics	6

I/O basics; stream classes; byte and character streams; reading and writing files; Applet fundamentals; Applet class; Applet initialization and termination; event handling; keyboard and mouse events; AWT class; Layout managers; panels; canvases; Frame windows; drawing lines, rectangles, ellipses. (8)

Course Code	PEIT 501b
Course Title	Unix Networking Programming (Theory)
Type of Course	PE-I
LTP	303
Credits	3

Total Lectures

SECTION-A	CO(s)
INTRODUCTION	1
TO NETWORK PROGRAMMING: OSI model, Unix standards, TCP and UDP, TCP connection	
establishment and termination, Buffer sizes and limitations, Standard Internet services, Protocol	
usage by common internet applications. (7)	
SOCKETS AND APPLICATION DEVELOPMENT	2,3,4
Introduction To Socket Programming System Calls Address Conversion Functions OSIX-	
Signal Handling Server With Multiple Clients Boundary Conditions Server Process C Rashes	
Server Host Crashes, Server Cashes And Reboots, Server Shutdown I/O, Multiplexing I/ Models -	
TCP Echo Client/Server with I/O Multiplexing. (7)	
SOCKET OPTIONS	2,3,4
socket Options Getsockopt And Setsockopt Functions Generic Socket Options IP Socket Option	
ICMP Socket Options TCP Socket Options Multiplexing TCP And UDP Sockets SCTP Sockets	
CTP Client/Server Streaming Example Domain Name System Gethostbyname, Gethostbyaddr,	
Getservbyname And Getservbyport Functions Protocol Independent Functions In CP Client/Server	
Scenario. (8)	
SECTION-B	
ADVANCED SOCKETS	5
IPv4 And IPv6 Interoperability Threaded Servers Thread Creation And Termination TCP Echo	
Server Using Threads Mutex Condition Variables Raw Sockets Raw Socket Creation Raw	
Socket Output Raw Socket Input Ping Program Traceroute Program. (8)	
SIMPLE NETWORK MANAGEMENT	6
SNMP Network Management Concepts SNMPv1 Management Information MIB Structure	
Object SyntaxMIB-II GroupsSNMPv1 Protocol And Practical Issues. (8)	
SNMP V2. V3 AND RMO	6
IntroductionToSNMPv2SMIForSNMPv2ProtocolSNMPv3ArchitectureAndApplicationsSecurityAndAccessControlModelOverviewOfRMON.(7)	,

S.	NAME	AUTHOR(S)	PUBLISHER
No.			
1	UNIX Network Programming, Sockets API, Volume I, 3rd Edition,	W.Richard	PHI
	PHI, 2010.	Stevens,	
2		William Stallings	PHI
	Pearson Edition, 2009	_	
3	UNIX Systems Programming using C++ 1st Edition, PHI, 2010	T. Chan	PHI

Course Code Course Title IT551c Python Programming (Practical)

Course Code	IT-501d
Course Title	Mobile Application Development
Type of Course	PE-I
LTP	303
Credits	3
Total Lectures	45

Course Assessment Methods:

S.NO	NAME	AUTHOR(S)	PUBLISHER
1	Android Application Development		

Course Code	PEIT 551d	
Course Title	Mobile Application Development (Practical)	
Type of Course	PE-I	
Credits	1.5	
Course Assessment Methods:		
End Semester Assessment (University Exam.)	00	
Continuous Assessment (Practical)	50	
Course Prerequisites	Introduction to Information Technology.	
Course Objectives	1.Understand and comprehend the basics of mobile	
	application programming.	
	2. Develop real-world applications using android	
	programming.	
SYLLABUS		

Course Code	PEIT 501e	
Course Title	Data Acquisition and Hardware Interfacing	
	(theory)	
Type of Course	PE-I	
LTP	303	
Total Lectures	45	
Course Assessment Methods		
End Semester Assessment (University Exam.)	50	
Continuous Assessment (Sessional, Assignments,	50	
Quiz)		
Course Prerequisites	Computer architecture and organization,	
	Microprocessor & Assembly Language	
	Programming	
Course Objectives (CO)	This course will introduce various data	
	acquisition systems and techniques and their	
	application using different hardware interfacing	
	mechanisms.	
Course Outcome	After completion of this course, the students	
	will be able to:	
	I. Recall different interface mechanism of	
	devices for data transfer.	
	II. Understand the principles of operation and	
	limitations of the data acquisition system	
	(single and multiple channels).	
	III. Apply acquired knowledge to design a	
	system of acquisition and control.	
	IV. Analyze	

Fundamentals of programming logic: Labview: Virtual instruments; indicators and	
controls; front panel and block diagram; data types and data flow programming; case and	
sequence structures; arrays, loops, and clusters; graphs and charts; sub VIs; and file I/O.	3,4
(9)	
SECTION-B	
Instrument control: Components of an instrument control system (GPIB and RS-232);	2
detecting and configuring instruments; and instrument drivers. (6)	
Instrumentation system design: Design specifications; functional block representation;	4,5
design, debugging, and testing; interpretation and presentation of data; user interface;	
temperature control system design; motor speed control system design; and	
instrumentation project incorporating multiple sensors, signal interfacing electronics,	
data-acquisition hardware, instrument control. (6)	
Buses Industry standard architecture (ISA), peripheral component Interconnect (PCI)	2
Instrumentation Buses: Serial (RS232C, USB) and Parallel (GPIB) Accelerated Graphics	
port (AGP) plug-and-play devices SCSI concepts USB architecture. (6)	
Project work using Labview Generation of signal (different function generators) on	6
PC and acquiring the signal from sensor at PC again with different sampling rate and	
quantization level. Representations of different characteristics of acquired signals and	
their analysis and reporting. (8)	

S.	NAME	AUTHOR(S)	PUBLISHER
No.			
1.	Instrumentation Devices And Systems	Rangan C. S., Sarma	Tata McGraw-Hill.
		G. R. and Mani V. S.	
		V	
2.	"Modern Electronic Instrumentation	Helfrick Albert D.	Prentice Hall India.
	and Measurement Techniques"	and Cooper W. D	
3.	Digital Instrumentation	A. J. Bouvens	McGraw-Hill.
4.	Process Control Instrumentation	Johnson Curtis D	Prentice Hall India.
	Technology		
5.	A Course In Electrical And Electronics	Shawhney A. K	Dhanpat Rai &
	Measurements And Instrumentation		Sons.

Course Code	PEIT 551e	
Course Title	Data Acquisition and Hardware Interfacing	
	(Practical).	
Type of Course	PE-I	

Course Code

Course Code

PEIT 501g

and apply engineering methods to design

its solution.

Course Code	PWIT 551
Course Title	Industrial Training (After 4 th Semester)
Type of Course	PW
LT P	000
Credits	1
Course Assessment Methods:	
End Semester Assessment (University Exam.)	00
Continuous Assessment (Practical)	50
Course Prerequisites	Nil
Course Objectives 1.To enable students to integrate theory practice.	
	2.To provide opportunity to students to hands on current problems industrial practitioners are dealing with.
	3.To introduce students to work culture and industrial practices.
Course Outcomes	After completion of this course, the students will be able to: I. Analyse practical aspects of a problem

Course Code	HSMC 501
Course Title	Cyber Laws & IPR (Theory)
Type of Course	HS

SYLLABUS FOR B.E. (I.T.) SIXTH SEMESTER

COURSE INFORMATION SHEET

Course Code	PCIT 601
Course Title	Theory of Computation (Theory)
Type of Course	PC
LTP	310
Credits	4
Total Lectures	45

Course Assessment Methods:

S.	NAME	AUTHOR(S)	PUBLISHER
1	Theory of computation	Mishra & Chandrashekharan	PHI Learning Pvt.
			Ltd.
2	Introduction to automata	Hopcroft H.E. & Ullman	Pearson/Addison
	theory, languages and		Wesley
	computation		
3	An introduction to formal	Peter linz	Jones & Bartlett
	languages and automata		Learning
4	Introduction to languages	John C Martin	McGraw-Hill
	and the theory of automata		
5	Elements of theory of	H.P. Lewis and C.H.	Prentice-Hall
	computation	papadimition	
Course Code	PCIT 602		
--	---	--	
Course Title	Machina Laarning		
Type of Course	PC		
LTP	403		
Credits	04		
Total Lectures	45		
Course Assessment Methods:			
End Semester Assessment (University Exam.)	50		
Continuous Assessment (Sessional)	50		
Course Prerequisites	Discrete Structures.		
Course Objectives	The objective is to familiarize the students with		
	some basic learning algorithms and techniques		
	and their applications as well as general issues		
	and then applications, as well as general issues		
	related to analyzing and handling data.		
Course Outcomes	After completion of this course, the students		
	will be able to:		
	I Recall the concepts of supervised learning		
	i. Recail the concepts of supervised learning,		
	unsupervised learning and neural		
	networks.		

II. Understand

RECOMMENBsssssss595.32 841.92 reW*nQ30.24 495.55 551.52 13.8 reO13.80KaSnBT/F1 12 Tf1 0 0 1 536.

Professional Elective-

RECOMMENDED BOOKS

S no	NAME	AUTHOR(S)	PUBLISHER
1.	Internet of Things: A Hands-On Approach	Vijay Madisetti, Arshdeep Bahga	Orient Blackswan Private Ltd,2015
2	The Internet of Things in the Cloud: A Middleware Perspective	Honbo Zhou	CRC Press, 2012
3	The Internet of Things Key applications		

BE-INFORMATION TECHNOLOGY SCHEME & SYLLABUS Batch 2021-25

Course Code	PEIT 601b
Course Title	Computer Graphics (Theory)
Type of Course	PE-II
LTP	300
Credits	03
Total Lectures	45
Course Assessment Methods:	
End Semester Assessment (University Exam.)	50
Continuous Assessment (Sessional)	50
Course Prerequisites	Data Structures
Course Objectives	The objective of the course is to build the
	foundation of digital image generation concepts
	and techniques so as to use this knowledge for
	building graphics applications.
Course Outcomes	After completion of this course, the students will
	<u>be able to</u> :
	I. Understand the basic principles of
	interactive graphics, and its applications.
	II. Learn and implement various algorithms for
	scan conversion and polygon filling.
	III. Apply geometric transformations on
	graphics objects and learn its application in composite form.
	IV. Define, analyze and perform the perspective
	and orthographic projections on points and
	scenes in three-dimensional space
	V. Analyze and implement clipping methods
	and its transformation to graphics display
	device.
	VI. Learn splines and curves formation in
	computer graphics and understand visible
	surface detection methods.

SYLLABUS

Output primitives

Scan conversion, Frame buffer, Point and Lines, Line Drawing Algorithms: DDA

RECOMMENDED BOOKS

S. No.	NAME	AUTHOR(S)	PUBLISHER
1	Computer Graphics C Version	Donald Hearn, M.P. Baker	Pearson Education
2	Principle of interactive Computer Graphics, 2 nd Edition	Newman and Sproul	McGraw Hill
3	Graphics, A programming Approach, 2 nd Edition	Steven Harrington	Tata McGraw Hill
4	Mathematical Elemants of Computer Graphics, 2 nd Edition	Rogar and Adams	McGraw Hill
5	Introduction to Computer Graphics, 1 st Edition	N.Krishnamurthy	Tata McGraw Hill

Course Code

Course Code	PEIT 601d
Course Title	Software Engineering (Theory)
Type of Course	PE -II
LTP	300
Credits	

RECOMMENDED BOOKS

S. No.	NAME	AUTHOR(S)	PUBLISHER
1	Software Engineering, 3 rd Edition	Ian Somerville	Pearson
			Education
2	S/W Engineering-A Practitioner's	Roger S. Pressman	McGRAW-
	Approach, 6 th Edition		HILL
3	Software Engineering: Theory and	S.L. Pfleeger, J.M. Atlee	Pearson
	Practice, Second Edition		Education
4	Software Engineering for Students,	Douglas Bell	Pearson
	Fourth Edition		Education
5	Software Engineering		

Professional Elective-III

COURSE INFORMATION SHEET

Course Code	PEIT 602a
Course Title	Principles of Telecommunication and
	Information Theory (Theory)
Type of Course	PE-III
LTP	300
Credits	03
Total Lectures	45
Course Assessment Methods:	
End Semester Assessment (University Exam.)	50
Continuous Assessment (Sessional)	50
Course Prerequisites	Basics of information theory and
	Communication.
Course Objectives	 I. To understand the terminology, fundamental concepts, issues and design approaches of various communication systems. II. To understand and apply the concepts of Information Theory.
Course Outcomes	After completion of this course, the students will be able to:

I. R7.02 Tm0f1 0 0 1.0353a306.89 238.13 242.

Bluetooth, WiFi networks and WLAN IEEE 802.11 standards, ZigBee Radios and IEEE 802.15.4, RFID systems and EPC Global UHF Class 1 Generation 2, WiMax, LTE, LTE-A. (12)

RECOMMENDED BOOKS

Course Code	PEIT 602b
Course Title	Multimedia System (Theory)
Type of Course	PE-III
LTP	300
Credits	03
Total Lectures	45

Course Assessment Methods:

End Semester Assessment (University Exam.)

Continuous Assessment (Sessional)

Course Code

RECOMMENDED BOOKS:

S.	NAME	AUTHOR(S)	PUBLISHER
No.			
1.	Computer Forensics: Computer Crime	John R VACCA	Firewall Media,
	Scene Investigation.		2009 edition Reprint
			2012.
2.	Guide To Computer Forensics And	Bill Nelson, Amelia	Cengage Learning
	Investigations	Phillips, Christopher	publications, latest
		Stuart	edition.
3.	Cybercrime	Bernadette H Schell,	ABC
	-	Clemens Martin	

Course Code	PEIT 602d
Course Title	Software Project Management
Type of Course	PE-III
LT P	300
Credits	03
Total Lectures	45
Course Assessment Methods: End Semester Assessment (University Exam.) Continuous Assessment (Sessional)	50 50
Course Prerequisites	
Course Objectives	I. To study the Introduction of project management and its basic concepts and techniques.II. To understand how to calculate risk, manage people, and to do resource allocation.

Course Outcomes

Requirement Specification, Management Control, Steps in project planning. (08)	
Programme management and project evaluation:	1,2,5
Programme Management, Managing resources within programme, Strategic programme	
management, Aids to programme management, Evaluation / Assessment of projects, Cost-	
benefit Analysis, Cash flow forecasting, Cost-benefit evaluation techniques, Risk evaluation.	
(08)	
Project approach and Software effort estimation:	1,2
Selection of an appropriate project technology, Choice of process model, Data Structure,	
Delivery Model, Basis for software estimation, Problem with over and under estimates,	
Estimation Techniques, Expert judgment, Albrecht Function Point Analysis, Function points	
Mark II, COSMIC Function point, COCOMO Model. (10)	
SECTION-B	
Activity Planning:	3
Objective of Planning, Project Schedule, Activities Sequencing and Scheduling,	
Development of Project Network, Time Estimation, Forward and backward Pass, Critical	
Path and Activities. (03)	
Risk Management:	

Risk, Risk categories, identificati

RECOMMENDED BOOKS:

RECOMMENDED BOOKS

S.No. NAME

Course Code

Definition of direct, inverse z-transform and its properties. System functions of a LTI system. Inverse z-

RECOMMENDED BOOKS

S.	NAME	AUTHOR(S)	PUBLISHER
No.			
1.	Digital Signal Processing: Principles,	Proakis&Manolakis	Pearson
	Algorithms and Applications, 3 rd Edition		
2.	Digital Signal Processing	E C Ifeacher and B W	Prentice Hall
		Jervis	
3.	Digital Signal Processing, 1 st Edition	S Salivaharan, A Vallavraj,	TMH
		C Granapriya	
4.	Digital Signal Processing	Sanjay Sharma	S.K. Kataria&
			Sons

Course Code	PCIT 751	
Course Title	Digital Signal Processing (Practical)	
Type of Course	PC	
Credits	1.5	
Course Assessment Methods:		
End Semester Assessment (University	00	
Exam.)	50	
Continuous Assessment (Practical)		
Course Prerequisites	Basic Information Theory and communication.	
Course Objectives	To develop skills for analyzing and synthesizing	
	systems that process discrete time signals, digital	
	filters with emphasis on realization and simulation.	

SYLLABUS

Practical based on theory.

Course Code	PCIT 702
Course Title	Compiler Design (Theory)
Type of Course	PC
LTP	310
Credits	04
Total Lectures	45
Course Assessment Methods:	
End Semester Assessment (University Exam.)	50
Continuous Assessment (Sessional)	50
Course Prerequisites	Computer Architecture and Organization, Theory
-	

Overview of Software Defined Networking: History and Evaluation of SDN, Introduction to SDN, Advantages of SDN over Traditional Network Architecture, Separation of Control and Data Plane, Use Cases of SDN. (6)	1
SDN ComponentsHow SDN Works - SDN Architecture : Data plane, Control plane, Application Plane, Southbound Interface, Northbound Interface, Pure and Hybrid openflow switches, Software and Hardware based Openflow switches, Programmable Network Hardware.(6)	2
SDN Controllers: Overview, Centralized & Distributed Controllers, Open source SDN Controllers: POX, Ryu, Floodlight, OpenDaylight, Advantages and Disadvantages of each controller. (5)	3
OpenFlow Protocol OpenFlow Overview- OpenFlow 1.0 and OpenFlow Basics, OpenFlow 1.1 Additions, OpenFlow 1.2 Additions, OpenFlow 1.3 Additions, Flow table components: matching rules, Actions, Counters, OpenFlow security, Proactive and reactive approach to insert flow table entries, Comparison of Openflow with other Southbound interfaces, OpenFlow Limitations. (6)	2
SECTION-B	
Mininet Emulation Tool Creating Default & Custom topologies in Mininet using low level API, mid-level API, high level API, Developing Switching and Firewall Applications in Mininet. Programming SDN: Northbound Application Programming Interface, Current Languages and	4
Tools, Composition of SDNs. (5)	

Course Code

crypto currency Application of Cryptography to Blockchain- Using hash functions to	
chipto currency, Application of Cryptography to Diockenant Cosing hash functions to chain blocks. Digital Signatures to sign transactions. Using hash functions for Droof of	
chain blocks, Digital Signatures to sign transactions, Using hash functions for Proof-of-	
Work. (10)	
SECTION-B	
UNIT 3 ó Introduction to Bitcoin: Wallet, Blocks, Merkley Tree, Hardness of mining,	4
Transaction verifiability, Anonymity, Forks, Double spending, P2P gateway,	
Mathematical analysis of properties of Bitcoin. (8)	
UNIT 4 ó Ethereum and Hyperledger: Ethereum networks, Ethereum Virtual Machine	4,5
(EVM), Wallets for Ethereum, Solidity language, decentralized applications using	
Ethereum. Solidity- Smart Contracts, Attacks on smart contracts, Hyperledger fabric, the	
plug and play platform and mechanisms in permissioned blockchain. (8)	
UNIT 5 - Security issues in Blockchain : Pseudo-anonymity vs. anonymity, Zcash and	6
Zk-SNARKS for anonymity preservation, attacks on Blockchains such as Sybil attacks,	
selfish mining, 51% attacksadvent of algorand, and Sharding based consensus	
algorithms . (7)	

RECOMMENDED BOOKS:

S. No. NAME

AUT98 1342 52.32 0.48 rc

Course Code	PEIT 701d
Course Title	Agile Software Development (Theory)
Type of Course	PE-IV
LT P	300
Credits	03
Total Lectures	45
Course Assessment Methods:	
End Semester Assessment	50
(University Exam.)	50
Continuous Assessment	
(Sessional)	
Course Prerequisites	Introduction of Information Technology

Course Objectives

SECTION-B	
Agile Project Management	5
Overview of Agile project management, Agile project management model: Overview of agile	
enterprise framework and agile delivery framework, Scaling and governing agile projects.	
Tools for Agile project management.(10)	
Agile Testing	5,6
Introduction to agile testing, Principles for testers, Overview of organizational challenges,	
The Agile testing Quadrants, Test Automation, The Agile lifecycle and its impact on testing,	
Types of testing in agile : TDD, BDD, Acceptance tests Exploratory testing, Risk based	
testing, Regression tests, Unit testing, Integration testing, system testing, Tools to support the	
Agile Tester. (12)	

RECOMMENDED BOOKS

S. No.	NAME	AUTHOR(S)	PUBLISHER
1	Agile Principles, Patterns, and Practices in C#	Martin C. Robert, Martin Micah	Prentice Hall, 2006
2	Agile Project Management: Creating Innovative Products, 2nd Edition	Jim Highsmith	Addison-Wesley Professional, 2010
3	Agile Testing: A Practical Guide for Testers and Agile Teams	Janet Gregory, Lisa Crispin	Addison-Wesley .

Course Code	PWIT 751
Course Title	Industrial Training (after 6th Semester)
Type of Course	PW
LTP	000
Credits	01
Course Assessment Methods:	
End Semester Assessment (University	00
Exam.)	50
Continuous Assessment (Practical)	
Course Prerequisites	Nil
PWIT 752	
--	
Project-III	
PW	
004	
02	
00	
100	
Nil	
1. Students learning skills to tackle realistic problems as they would be solved in the real world.	
2. To work as team to deliver project that matches the required specification.	
 After the completion of this course, the students will be able to: I. Plan, Analyze, design and implement gathered skills and knowledge over the field of research and to solve real life problem. II. Apply software development lifecycle to plan & manage the projects. III. Demonstrate the ability to communicate effectively in orally and in writing. IV. Learn to work in team and focus on getting work done on time. 	

SYLLABUS FOR B.E. (I.T.) EIGHTH SEMESTER

COURSE INFORMATION SHEET

Course Code	PCIT 801
Course Title	Embedded System Design (Theory)
Type of Course	PC
LTP	313
Credits	04

Course Assessment Methods:

S. No.	NAME	AUTHOR(S)	PUBLISHER
1.	The 8051 Microcontroller and	Muhammed Ali Mazidi,	Pearson 2 nd
	Embedded Systems	Janice GillispieMazidi and	Edition
		Robin D. Mckinlay	
2.	The 8051 Microcontroller:		
	Architecture, Programming &		
	Applications		

BE INFORMATION TECHNOLOGY SCHEME & SYLLABUS Batch 2021-25

Course Code	PCIT 802
Course Title	Cloud Computing (Theory)
Type of Course	PC
	310
Credits	04
Total Lectures	45
Course Assessment Methods:	
End Semester Assessment (University Exam.)	50
Continuous Assessment (Sessional)	50
Course Prerequisites	Operating System, Computer Networks
Course Objectives	I. To understand the basics of Cloud
	Computing, different deployment models
	and service models of Cloud.
	II. To have an overview about the Public cloud
	and Private cloud, and the security issues
	related to Cloud computing.
Course Outcomes	After the completion of this course, the students
	will be able to:
	Ī.

S. No.	NAME	AUTHOR(S)	PUBLISHER
1.	Cloud Computing: Principles and	RajkumarBuyys, James	Wiley, 2011
	Paradigms	Broberg, Andrzej Goscinski	
		(Editors)	
2.	Cloud Computing	Michael Miller	Pearson
			Education
			2009
3.	Cloud Computing for dummies,	Judith Hurwitz, Robin	Wiley, 2009
		Bllor, Marcia Kaufman,	
		Fern Halper	
4.	Cloud Computing: A Practical Approach	Anthony T. Velte, Toby J.	McGraw Hill,
		Velte, and Robert	2010.
		Elsenpeter	
5.	Handbook of Cloud Computing		

Professional Elective-V COURSE INFORMATION SHEET

Course Code	PEIT 801a
Course Title	Optical Communication
Type of Course	PE-V
LTP	300
Credits	03
Total Lectures	45

Course Assessment Methods:

Optical Fiber Wave Guides:	
Ray Theory of Transmission: Total Internal reflection, Acceptance Angle, Numerical	2
Aperture, Step-Index Fiber, Graded Index Fiber, Modes in SI and GRIN fiber. (9)	
Signal Degradation in Optical Fibers:	3
Attenuation, Material absorption losses, linear and non linear scattering losses, fiber bend	
loss, dispersion viz intermodal dispersion and intramodal dispersion, overall fiber dispersion	
and polarization mode dispersion, Introduction to nonlinear effects: Self phase modulation,	
cross phase modulation, Stimulated Brillion and Raman scattering, Four Wave Mixing. (7)	
SECTION-B	
Optical Sources	4
Lasers: Principles of Laser, absorption and emission of adiation, population inversion, optical	
feedback and laser oscillation. Optical emsission from semiconductore- pn	
junction, spontaneous emission. LED: basic concepts, advantages, power and efficiency. (5)	
Optical detectors	5
Principles of Photodetection, Photomultiplier, Semiconductor Photodiode, PIN photodiode,	
Avalanche photdiode. (6)	
Optical fiber connections: joints and couplers:	6
Fiber alignment and joint loss, Fiber splices, Fiber connectors principles, Fiber couplers. (8)	

S. No.	NAME	AUTHOR(S)	PUBLISHER
1	Fiber Optic Communications, latest Edition	Joseph C. Palais	

Introduction to Snort, Snort Installation Scenarios, Installing Snort, Running Snort on Multiple,Network Interfaces, Snort Command Line Options. Step-By-Step Procedure to Compile and Install Snort Location of Snort Files, Snort Modes Snort Alert Modes. (9)	
SECTION-B	
UNIT-IV	3,4
Working with Snort Rules, Rule Headers, Rule Options, Snort Configuration File etc.,	
Plugins, Preprocessors and Output Modules, Using Snort with MySQL. (9)	
UNIT-V	5,6
Using ACID and Snort, Snarf with Snort, Agent development for intrusion detection,	
Architecture models of IDs and IPs. (9)	

S.	NAME	AUTHOR(S)	PUBLISHER
No.			
1.		Rafeeq Rehman	1 st Edition, Prentice
			Hall, 2003.
2.		Christopher Kruegel,	1 st Edition,
		Fredrik Valeur,	Springer, 2005
		Giovanni Vigna	
3.		. Carl Endorf, Eugene	1 st Edition, Tata
		Schultz and Jim	McGraw-Hill, 2004.
		Detection &	
4.	Detection.	Stephen Northcutt,	3 rd Edition, New
		Judy Novak	Riders Publishing,
			2002.
5		T Fahringer R	Khanna Publishers
~	Development and Computing	Prodan	2012
	Development und computing	1 I Vulli	2012.

S. No.	NAME	AUTHOR(S)	PUBLISHER	
Tf1 0				

S. No.	NAME	AUTHOR(S)	PUBLISHER
1	Principles and Practices of	Rao V.S.P. and Narayana	Konark Publishers,
	Management	P.S.	1987
2	Principles & Practice of	Prasad L.M.	8 th Edition, Sultan
	Management		Chand & Sons, 2012
3	Essentials of Management:	Weihrich H.and Koontz H.	Edition, McGraw
	International and Leadership		Hill, 2012
	Perspective		
4	The New Era of Management	Daft R.L	11 th

Corporate Governance	(3)
Concept, Elements and Essentials of Good Governance.	
Contract Law	(3)
Concept, Types and Essentials Elements of Contract.	
Sectionnership Law	(2)
Nature of Sectionnership, Provisions of Sectionnership Act, Issues Related to	1
Sectionnership Firm, Hypothetical Formation of a Sectionnership Firm.	
Company Law	(2)
Nature of Company, Provisions of Company Act, Issues Related to Incorporation of	
Company, Hypothetical Formation of a Company.	

S. No. NAME

AUTHOR(S)

PUBLISHER

Course Code	HSMC 801c
Course Title	Entrepreneurship and Project Management
Type of Course	HS

Nature and Functions of Financial Institutions: Reserve Bank of India (RBI), Securities		
and Exchange Board of India (SEBI), Discount and Finance House of India (DFHI) .		
Long Term Investment Decisions	(3)	
Capital Budgeting: Concept, Importance, Factors Techniques/Methods with Numerical		
Applications (Pay Back Period, Accounting Rate of Return, Net Present Value, Internal		
Rate of Return and Profitability Index), Case Study.		
Short Term Investment Decisions	(2)	
Working Capital: Nature, Type and Factors Affecting the Requirement of Working		
Capital, Case Study.		
Financing Decisions	(3)	
Capital Structure: Essentials and Approaches of Capital Structure Sources of Finance		
(long-term and short-term), Financial Leverage: Concept and Numerical Application,		
Case Study.		
Dividend Decisions	(2)	
Types of Dividend, Dividend Policy: Nature and Factors Affecting Dividend Policy, Case		
Study.		

S.No.	NAME	AUTHOR(S)	PUBLISHER
1	Financial Management	Shah P.	

Course Code	HSMC 801e
Course Title	Marketing Management
Type of Course	HS
LTP	300
Credits	3

Course Assessment Methods

End Semester Assessment (University Exam.) Continuous Assessment (Sessional, Assignments, Quiz)

Course Code	PWIT851
Course Title	Project-IV
Type of Course	PW
L T P	004
Credits	02
Course Assessment Methods:	
End Semester Assessment (University Exam.)	00
Continuous Assessment (Practical)	100
Course Prerequisites	Nil
Course Objectives	 Students learning skills to tackle realistic problems as they would be solved in the real world. To work as team to deliver project that matches the required specification
Course Outcomes	 <u>After the completion of this course, the students will be able to:</u> I. Plan, Analyze, design and implement gathered skills and knowledge over the field of research and to solve real life problem. II. Apply software development lifecycle to plan & manage the projects. III. Demonstrate the ability to communicate effectively in orally and in writing. IV. Learn to work in team and focus on getting work done on time.

BE-INFORMATION TECHNOLOGY SCHEME & SYLLABUS Batch 2021

Course Code