Master of Engineering in Electronics & Communication Engineering (Artificial Intelligence)

(2023-2025)

Electronics & Commication Engineering Department National Institute of Technical Teachers Training & Research Chandigarh

SCHEME OF EXAMINATION FOR

MASTER OF ENGINEERING - ELECTRONICS AND COMMUNICATION ENGG. (ARTIFICIAL INTELLIGENCE)

Year: First

Semester I

			Scheme of Teaching		ching	Scheme of Examination
S. No.	Course Code	Course Name	L-T-P	Contact hrs/week		

Year: First

Semester II

			Sc	heme of Tead	ching		Scheme of Exami	nation	
S.	Course Code	Course Nome	L-T-P	Contact	Credits		Theory		Practical
No.	wuise wue	Course marine		hrs/week		Internal	University	Total	
						Assessment	Assessment		

Year: Second

Semester III

			Scheme of Teaching		Scheme of Examination				
S.	Course	Course Nome	L-T-P	Contact	Credits		Theory		Practical
No.	Code	Course Name		hrs/week		Internal	University	Total	
						Assessment	Assessment		
									-
									-

List of Example MOOCS Courses

MOOCS-I (Choose one from the list)

S. No.	Name of Course##	Faculty	Link

MOOCS-II (Choose one from the list)

S. No.	Name of Course##	Faculty	Link
1.	Managing Learning Resources	Uday Chand Kumar National Institute of Technical Research, Kolkatta	https://swayam.gov.in/courses/ 5224-managing-learning- resources
2.	Outcome Based Pedagogic Principles for Effective Teaching	Shyamal Kr. Das Mandal Institute of Technology- Kharagpur	https://swayam.gov.in/courses/ 4898-July-2018-outcome- based-pedagogic-principles- for-effective-teaching
3.	Pedagogical Innovations & Research Methodology	Vandana Punia Guru Jambheshwar University of Science and Technology	https://swayam.gov.in/courses/ 5269-pedagogical-innovations- reserach-methodology
4.	Managing Intellectual Property in Universities	Feroze Ali IIT Madras	https://swayam.gov.in/courses/ 5474-jan-2019-managing- intelluctual-property-at- universities
5.	Innovation, Business Models and Entrepreneurship	Rajat Agarwal IIT Roorkee	https://swayam.gov.in/courses/ 4816-july-2018-innovation- business-moels-and- entrepreneurship
6.	Environment Natural Resources and Sustainable Development	Prabhakar Rao Jandhyala University of Hyderabad	https://swayam.gov.in/courses/ 3911-environment-natural- resources-and-

tle	DATA STRUCTURES AND PROGRAMMING	Credits	04
-----	---------------------------------	---------	----

SECTION B

UNIT II: Python Programming

Introduction, gitHub, Functions, Booleans and Modules, Sequences, Iteration and String Formatting, Dictionaries, Sets, and Files, Exceptions, Testing, Comprehensions, Advanced Argument Passing, Lambda -- functions as objects, Object Oriented Programming, More OO -- Properties, Special methods, Iterators, Iterables, and Generators, Decorators, Context Managers, Regular Expressions, and Wrap Up

SECTION C

UNIT III: JavaScript

Basics, Functional programming, Object oriented programming, Client-side applications, Server-side applications, Design patterns and Idioms, Popular 16 frameworks

Suggested Books

Title	NATURAL LANGUAGE PROCESSING		Credits	04
Code	ECEAI 1102	Semester: I st	LTP	

Title

SECTION-B						
Classification algorithms covering logistic regression, Multi-Layer perceptron, SVM, Decision trees and Random Forest8Probabilistic algorithms covering Bayes classifier and Hidden Markov Models8						
Cross Validation, Performance measurement of models Feature engineering techniques to improve model performance						
Unsupervised learning: k-means clustering, hierarchical clustering, Gaussian Mixture models and Density Based clustering Dimensionality Reduction techniques: PCA, FDA, QDA, Random Forests						
Dimensionality Reduction techniques: PCA, FDA, QDA, Random ForestsSuggested Books1. Machine Learning by Tom Mitchell 2. Introduction to Machine Learning by Ethem Alpaydin 3. Introduction to Statistical Learning, Gareth James, Daniela Witten, Trevor Hastie, Robert Tibshirani, Springer, 2013. 4. Pattern Classification, 2nd Ed., Richard Duda, Peter Hart, David Stork, John Wiley & Sons, 2001.						

Title	FUNDAMENTALS	OF IoT	Credits	03
Code	CSEI 8107	Semester: Ist	LTP	300
Max. Marks	External: 50	Internal: 50	Elective	N

Pre-

SECTION-B						
SDN for IoT	CDNL CDNL for LoT. Data Aggregation. Handling and Analytics	4				
Cloud Computing, Sensors, Fog Computing						
Understanding of API	of the various protocols being used in IoT like MQTT, AMQP, REST	4				
IoT Platforms and Applications Understanding of the IoT platforms like PTC Thingworx and IoT frameworks like MS Azure, Understanding of the usage of these platforms to build applications like Smart Cities and Smart Homes, Connected Vehicles, Smart Grid, Case Study: Agriculture, Healthcare, Activity Monitoring.						
Suggested Books	 e and I Jan Holler, VlasiosTsiatsis, Catherine Mulligan, Stefan Avesand, Publishing Co. Inc, 2014. st Edition, A Publications, 2017. St Edition, Caringer International Dubliching, 2019. 	Fast Way Stamatis Science Auerbach oT				
	st Edition, Springer International Publishing, 2018.	·				

Title	COMPUTER VISION		Credits	04
Code	ECEAI 1201	Semester: 2 nd	LTP	400
Max. Marks	External: 50	Internal: 50	Elective	N

Pre-requisites Digital Signal Processing

SECTION-B

Image Morphological Processing:

Introduction to basic operation on binary and grayscale images: Dilation, Erosion, Opening & Closing, Morphological Algorithms: Boundary & Region Extraction, Convex Hull, Thinning, Thickening, Skeletons, Pruning.

Image Segmentation, Representation & Descriptions:

Point, Line and Edge Detection, Thresholding, Edge and Boundary linking, Hough
transforms, Region Based Segmentation, Contour following, Boundary 6
representations, Region Representations, shape properties, Boundary Descriptors,
Regional Descriptors, Texture representations, Object Descriptions

Object Recognition:

Patterns and Patterns classes, Recognition based on Decision Theoretic methods, 9 Structural Methods

- 1. Gonzalez and Woods: Digital Image Processing ISDN 0-201-600- 781, Addison Wesley 1992.
- 2. Forsyth and Ponce: Computer Vision A Modern Approach Pearson Education Latest Edition.
- 3. Pakhera Malay K: Digital Image Processing and Pattern Recognition, PHI.

Suggested Books

Title	DEEP LEARNING		Credits	04
Code	ECEAI 1202	Semester: 2 nd	LTP	400
Max. Marks	External: 50	Internal: 50	Elective	N
Pre-requisites	Machine Learning, Pyth	non Programming	Contact Hours	45

Objectives This course aims to present the mathematical, statistical and computational challenges of building stable representations for high-dimensional data, such as images, text and data. Course delves into selected topics of Deep Learning, discussing recent models from both supervised and unsupervised learning. Special emphasis will be on convolutional architectures, invariance learning, unsupervised learning and non-

SECTION-B			
Regularization: Bias Variance Tradeoff, L2 regularization, Early stopping, Dataset augmentation. Parameter sharing and tying Injecting noise at input Ensemble			
methods, Dropo	ut	0	
Greedy Layerwise Pre-training, Better activation functions, Better weight initialization methods, Batch Normalization			
Learning Vectorial Representations of Words			
Convolutional Neural Networks, LeNet, AlexNet, ZF-Net, VGGNet, GoogLeNet, ResNet, Visualizing Convolutional Neural Networks, Guided Backpropagation, Deep Dream, Deep Art, Fooling Convolutional Neural Networks.			
Suggested Books	 Deep Learning by Ian Goodfellow, Yoshua Bengio, Aaron and Francis Bach. Neural Networks and Deep Learning By Michael Nielsen Deep Learning with Python by Francois Chollet, 1st Edition Hands-On Machine Learning with Scikit-Learn and Ter Concepts, Tools, and Techniques to Build Intelligent Systems by <u>Géron</u>,1st Edition Colab (Google) 	Courville nsorFlow: <u>Aurélien</u>	

Title	INDUSTRIAL INTERNET OF THINGS		Credits	03
Code	CSEI 8206	Semester: 2 nd	LTP	300
Max. Marks	External: 50	Internal: 50	Elective	N
_				

Pre-requisites

SECTION-B	
Big Data Analytics and Software Defined Networks	2
IIoT Analytics : Introduction, Machine Learning and Data Science, and Julia Programming, Data Management with Hadoop	6
Data Center Networks, Security and Fog Computing, Cloud Computing in IIoT	3
Application Domains: Factories and Assembly Line, Food Industry, Healthcare, Power Plants, Inventory Management & Quality Control, Plant	: :

Title	BIG DATA ANALYTICS		Credits	03
Code	CSEI 8207	Semester: 2 nd	LTP	300
Max. Marks	External: 50	Internal: 50	Elective	N

BIG DATA ACQUISITION & STORAGE

Data Acquisition: Apache Flume; Apache Sqoop; Publish - Subscribe Messaging Frameworks; Big Data Collection Systems, Messaging queues, 4 Custom connectors, Implementation examples

Big Data Storage: HDFS, HBase, Kudu

NoSQL Databases: Key-value databases, Document databases, Column Family databases, Graph databases

Standard ETL Tools: Standard A 0 Qq63.624 634.3 438.79 25.8 reW* n EMC /F

Title	CLOUD COMPUTING AND VIRTUALIZATION		Credits	04
Code	ECEAI 1103	Semester: I st	LTP	400
Max. Marks	External: 50	Internal: 50	Elective	Y
B				

Pre-requisites Basic Knowledge of Distributed Computing

SECTION-B			
Network Protocols:Issues in designing MAC protocol for WSNs, Classification of MAC Protocols, S-MAC Protocol, B-MAC protocol, IEEE 802.15.4 standard and Zig7Bee, Dissemination protocol for large sensor network.7			
Routing protoc protocols, Energ routing.	ols: Issues in designing routing protocols, Classification of routing y-efficient routing, Unicast, Broadcast and multicast, Geographic 7		
Data Storage and and retrieval in technique. Applications: De Habitat Monitorin	nd Manipulation: Data centric and content based routing, storage network, compression technologies for WSN, Data aggregation etecting unauthorized activity using a sensor network, WSN for 8 ng.		
Suggested Books	 Protocols and Architectures for Wireless Sensor Network by Holger Kerl & Andreas Willig, John Wiley and Sons, 2005 Wireless Sensor Network by Raghavendra, Cauligi S, Sivalingam, Krishna M., Zanti Taieb, Springer 1st Ed., 2004 Wireless Sensor Network by Feng Zhao, Leonidas Guibas, Elsevier, 1st Ed. 2004 Wireless Sensor Network: Technology, Protocols and Application by Kazem, Sohraby, Daniel Minoli, Taieb Zanti, John Wiley and Sons, 1st Ed., 2007 Networking Wireless Sensors by B. Krishnamachari, Cambridge University Press. Sensor Networks and Configuration: Fundamentals, Standards, Platforms, and Applications by N. P. Mahalik, Springer Verlag. 		

Title

TitleRESEARCH METHODOLOGYCredits04

Title

SECTION-B

Other Optimization Methods Artificial Immune Systems, Other Algorithms Harmony Search, Honey-Bee Optimization, Memetic Algorithms, Co-

Title	EMBEDDED SYSTEM DESIGN & ARCHITECTURE		Credits	04
Code	ECEAI 1205	Semester - 2 nd	LTP	400
Max. Marks	External - 50	Internal - 50	Elective	Y

SECTION-B

CORTEX EXCEPTION HANDLING AND INTERRUPTS

Exceptions: Exception Types, Priority, Vector Tables, Interrupt Inputs and Pending Behavior, Fault Exceptions, Supervisor Call and Pending Service Call. NVIC: Nested Vectored Interrupt Controller Overview, Basic Interrupt Configuration, Software Interrupts and SYSTICK Timer. Interrupt Behavior: Interrupt/Exception Sequences, Exception Exits, Nested Interrupts, Tail, Chaining Interrupts, Late Arrivals and Interrupt Latency.

CORTEX, M3/M4 PROGRAMMING

Cortex, M3/M4 Programming: Overview, Typical Development Flow Using C, CMSIS (Cortex Microcontroller Software Interface Standard), Using Assembly. Exception Programming: Using Interrupts, Exception/Interrupt Handlers, Software Interrupts, Vector Table Relocation. Memory Protection Unit and other Cortex, M3 features: MPU Registers, Setting Up the MPU, Power Management, Multiprocessor Communication. STM32L15xxx ARM Cortex M3/M4 Microcontroller: Memory and Bus Architecture, Power Control, Reset and Clock Control. STM32L15xxx Peripherals: GPIOs, System Configuration Controller, NVIC, ADC, Comparators, GP Timers, USART. Development & Debugging Tools: Software and Hardware tools like Cross Assembler, Compiler, Debugger, Simulator, In-circuit Emulator (ICE), Logic Analyzer etc.

[1]

nd Edition, Tata McGraw Hill, 2

Suggested Books

FUZZY LOGIC: Fuzzy pattern re in fuzzy systems	APPLICATIONS AND IMPLEMENTATION ecognition systems, Neuro-fuzzy systems and evolutionary learning s, Fuzzy logic implementation using Python scikit, fuzzy	10
Suggested Books	 "Fuzzy Logic with Engineering Applications" Timothy J. Ros 0470860758, 650 pages, paperback, published by John Wiley 2nd edition, 2004. Fuzzy Logic: Intelligence, Control, and Information, J. Yen, R. Prentice Hall, 1998. Fuzzy Logic: Implementation and Applications by Marek J and Daniel J. Mlynek Wesley Longman, Menlo Park, CA, 1998 (later published by Hall). 1994 Academic Press Professional. 	s, ISBN: & Sons, Langari, J. Patyra Prentice